Gauges in Gravity Theory
Field Equation of Einstein’s General Relativity
Gauge freedom is the freedom of choosing a coordinate system. Fixing a gauge means choosing a particular coordinate system.
Perturbation Theory of General Relativity
Gauge tranformation is Lie derivative along some arbitary vector here.
Line element
\begin{eqnarray} \tilde g _ {00} &=& -a^2(1+2 A Y) \newline \tilde g _ {0j} &=& -a^2 B Y _ j \newline \tilde g _ {ij} &=& a^2(\gamma _ {ij} +2 H _ L Y \gamma _ {ij} +2 H _ T Y _ {ij} ) \end{eqnarray}
Energy momentum tensor is
\begin{eqnarray} \tilde T^0 _ {\phantom{0}0} = -\rho (1+\delta Y) \newline \tilde T^0 _ {\phantom{0} j} = (\rho + p)(v - B) Y \newline \tilde T^j _ {\phantom{j}0 } = -(\rho + p)v Y^{j} \end{eqnarray}
For a infinitesimal gauge transformation along some vector (X=T\partial _ t + L^i \partial _ i), gauge variables are
Symbol | Physics | Gauge Transformation | Note |
---|---|---|---|
$\tilde A $ |
Through that we can find out gauge invariant variables